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EVALUATION OF MAGNETIC REFOCUSING IN LINEAR-BEAM MICROWAVE TUBES

by N. Stankiewicz

Lewis Research Center

SUMMARY

Magnetic field configurations in which the axial component of the field decays lin-

early to a constant plateau field are evaluated for use in refocusing the output beam of

linear beam microwave tubes. The slope of the decay and the value of the plateau field

are parameters in this study. Expansion of the beam in a decaying magnetic field with

subsequent dilution of space charge forces and reduction of transverse velocities is es-

sential for efficient collection of the spent electrons.

A uniform beam with a space charge force only in the radial direction is assumed,

and the electron trajectories are computed for various classes. Each class is char-

acterized by an energy and an injection angle. For a given magnetic configuration (slope

and plateau value) the plateau length is calculated for a specified class and the rms de-

viation of the output angles for all classes is computed at the end of this plateau length.

A minimum condition for a refocused beam is defined to be one in which the rms value of

the output angles is less than the rms input. Many of the configurations satisfied this

criteria and successfully reduced the rms value by half. However, the results are sen-

sitive to the plateau length and an actual design should be capable of controlling this

length.

INTRODUCTION

A major problem in improving the efficiency of linear beam microwave tubes is the

recovery of the spent beam energy. Some early schemes used one- or two-stage de-

pressed collectors in which the electrons would give up their energy by doing work

against the electrostatic potential of a collector plate. These early designs (discussed

by Kosmahl in ref. 1) of Wolkstein (ref. 2) and Sterzer (ref. 3) have three primary

defects.

First, these collectors are efficient in collecting electrons of only one or two energy

classes. Electrons having energies higher than the potential "hill" of the collector



dissipate their excess energy as heat. However, electrons with insufficient energy to
climb the hill present a backstreaming problem because they can be reflected back into
the rf interaction region causing noise. Second, the metallic boundaries of these early
collectors did not coincide with natural equipotential surfaces. This can cause strenuous
deflections of the electrons even though they may have the correct energy. These vio-
lently deflected electrons can be reflected back into the tube and contribute to the noise
problem. Or they might impinge upon the tube walls or onto a mismatched potential sur-
face thereby producing results which are counter productive to collector efficiency.

Third, for efficient collection it is essential that, prior to entering the collector, the
beam must be conditioned in a refocusing region to reduce space charge forces and trans-
verse velocities. The emergent beam of a Klystron or a traveling wave tube as it leaves
the rf interaction region quickly becomes debunched. The fast electron of late cycles
overtake the slow electrons from previous cycles and the beam becomes homogeneous in
the axial direction. However, the beam is still in a highly compressed radial state.
Within the tube the strong space charge force of the beam is balanced by a confining mag-
netic field. At some point the magnetic field decays and eventually goes to zero resulting
in an expansion of the beam. If the decay is too sudden, the beam virtually explodes mak-
ing collection difficult.

Figure 1 shows the resultant expansion when the magnetic field vanishes abruptly.
The beam expansion for various initial axial velocities Pz is shown in this figure (sym-
bols are defined in appendix A), and it is assumed that the beam was formed with no mag-
netic flux on the cathode. With these assumptions the curve labeled Class 1 represents
an ideal Brillouin expansion (see refs. 4 and 5). The data points of this curve are taken
from Pierce (ref. 4) and Gewartowski and Watson (ref. 5) while the continuous curves are
computed using the program written for this study.

A segmented depressed collector and refocusing technique has been proposed by
Kosmahl (ref. 1) and a prototype has been built and tested at Lewis Research Center (see
Kavanagh, Alexovich, and Chomos (ref. 6)). The Lewis collector has 10 segments but a
system study by Dayton (ref. 7) shows that, after the sixth stage, collector efficiency is
improved only about 1 percent per stage.

Each segment of the depressed collector is maintained at a potential which is deter-
mined by solving Poisson's equation together with the electron trajectory equations. The
simultaneous solution of these equations is an iterative procedure the details of which can
be found in a report by Reese (ref. 8). A 12-gigahertz coupled cavity traveling wave tube
(TWT) equipped with the Lewis designed collector and refocuser has demonstrated a dra-
matic increase in overall efficiency from 27 to 56 percent. The collector efficiency was
determined to be 81 percent (ref. 9). This tube will be flown in the Communication Tech-
nology Satellite (CTS) about 1975. The purpose of the study is to evaluate refocusing mag-
netic field configurations in which the field decays linearly to a constant field. Kosmahl
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(ref. 10) has proposed this technique for refocusing, decompressing, and conditioning
spent electron beams before injection into a segmented depressed collector. His pro-
posal consisted of a region of decaying magnetic field over a length of between one to
three cyclotron wavelengths (computed at the main magnetic field of the tube) followed
by a stabilizing region not greater than one cyclotron wavelength (computed at the plateau
field). This criteria does not provide a specific optimum design but represents limiting
bounds to the dimensions of the refocusing region in which the optimum is located.
Branch and Neugebauer (ref. 11) evaluated several magnetic designs following the
Kosmahl criteria. They concluded that the optimum design was a decay length between
two to three cyclotron wavelengths followed by a plateau field of 0. 6 to 0. 8 cyclotron
wavelengths (at the reduced field amplitude). These results will be discussed in a later
section. The basic design considered in this study (see fig. 2) is a region in which the
beam is allowed to expand in a linearly decaying magnetic field. This is followed by a
plateau or constant magnetic field region in which the beam is stabilized at a new radius.
The final radius of the beam is determined by the value of the magnetic field in the pla-
teau region. The slope and the magnitude of the plateau region are parameters in the
study. The length of the plateau region is computed.

ASSUMPTIONS

This study is intended to give a relative evaluation of the two-parameter magnetic
field configuration described in the introduction. It is, therefore, required to compute a
large number of cases in as short a time as possible. To facilitate matters, the follow-
ing space charge assumptions are made:

(1) The beam has cylindrical symmetry and space charge forces in the axial direc-
tion are ignored.

(2) The initial radius of the beam is one Brillouin radius; a particle at a radius
larger than one Brillouin radius sees a logarithmic potential.

(3) The beam is uniform in density; a particle at a radius smaller than one Brillouin
radius sees a potential proportional to its radius.

These assumptions uncouple the equations of motion of the many-body problem and
replace them with an equation of motion of a single particle in a cumulative potential.
As the beam expands in the refocusing region, this description becomes more correct,
that is, the uncoupling of particles becomes more complete.
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METHOD OF SOLUTION

A class is defined in this report as those electrons having the same initial injection

angle and axial velocity. At first let us limit the discussion temporarily to a beam hav-

ing just one class of electrons.

As the magnetic field decaysfrom its maximum value within the tube to a particular

plateau level, the beam will expand because of space charge forces. Inertia will cause

an overexpansion of the beam. In the region of the magnetic plateau the beam expansion

slows as a function of the time spent in the field. At some point its radial velocity will

vanish and this integration distance is the length of the plateau region. Beyond this

length it is assumed that magnetic shields will effectively cause the field to vanish sud-

denly. This is the entrance to the collector region and the analysis could proceed as in

reference 8. The design is uniquely and simply solved for a single class of electrons.

However, realistic beams contain many classes of electrons and each class requires a

different plateau length.
Nine classes of electrons are considered in this study; that is, three initial injection

angles for each of three initial axial velocities. The three velocities are the maximum,
the dc, and the minimum velocities of a beam. The initial injection angles are zero and
+ the maximum injection angle. After the plateau length is determined by choosing a de-
sign class, the equations of motion of the other classes are integrated using the same
magnetic configuration. The electrons arrive at the end of the plateau with a variety of
angles, and those of the design class will, of course, be zero. The angular spread, the
average angle, and the rms deviation are computed. A minimum requirement for a given
refocusing scheme should be that the final rms deviation is less than or at least equal to
the initial rms deviation of the injection angles.

RESULTS

An extensive library of cases has been computed for this study. The cases are di-
vided into those having a cathode magnetic flux of 0. 1 (almost Brillouin) and those with a
cathode magnetic flux of 0.9 (nearly fully confined).

In general the results demonstrate an approach to be used in achieving a satisfactory
magnetic configuration rather than a specific design even though certain of the configura-
tions are considered superior. The reason is that the results are sensitive to small
changes in the parameters which determine the trajectories. Small changes in the initial
conditions, the slope of the magnetic decay, the magnitude of the plateau field or its
length cause large changes in the results.
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Figure 3 shows a typical set of trajectories that are computed in this study. The

magnetic configuration shown on this plot has a decay slope of (1 - 0. 19)/8, that is, the

magnetic field decays from 1 B to 0. 19 B in an axial distance of 8 a (approx-

imately 1. 25 X c). The plateau length is 20 a 0 , and the design velocity is Po = 1. 0.
Note that the angle of the design velocity trajectory is near zero at = 28 a . The rms

value of the exit angle for all classes is computed at this point and this result represents

a typical calculation for a single point in figure 4.

As mentioned in the INTRODUCTION, Branch and Neugebauer (ref. 10) evaluated
designs of the type examined in the present study. They considered much broader ranges

of injection energy but limited their study to 40 configurations. Their evaluation of re-

focusing designs were also carried out as a function of an electron distribution function.

In contrast, the present study evaluated 480 magnetic configurations and concen-

trated on the two parameters: decay slope and plateau field. The energies ranged from

approximately 50 to 120 percent of the dc energy (i.e., 0.7 : Po -s 1.1), and the injec-

tion angles were ±50 . This study is, therefore, more appropriate to TWT spent beam
-refocusing. Because the equations of motion were uncoupled by use of an approximation

for the space charge, both studies (ref. 10 and this study) are independent of the distribu-

tion function except as an indicator of,the design minimums and maximums.

As the magnetic field decays, the particles seek new equilibrium positions in which
the magnetic field balances the space charge. The inertia of the particles causes over-

shooting and oscillatory motion occurs. The particles with slower axial velocities oscil-

late most violently because they rarely find themselves in a comfortable magnetic field.
An ideal decay would be one in which all particles expand monotonically. Such a design

would entail a rapid magnetic decay in order to accommodate the .lower particle, fol-

lowed by a plateau of sufficient length to reduce the final angles.

The oscillation problem is alleviated somewhat if the plateau length is determined by

the slow particles. This is shown by comparing figures 4(a) and (b) with figures 4(c)
and (d). In the first two figures the plateau length was determined by the particles ini-
tially having a dc velocity (P = 1. 0). The second two figures were computed using the

same initial conditions but a design velocity of P = 0. 7 was used to compute the plateau
length. In all cases the beam is better focused if the plateau length is computed by using
the slower velocity as the designing velocity. On the other hand, the problem is aggra-

vated if the plateau length is determined by the fast electrons, because in this case not
only would the slow electron trajectories oscillate but the dc class would also begin

oscillations.

. Figure 5 shows the magnetic field plateau value plotted against the axial distance (.

The cathode field in figure 5(a) is 0.1 B , and infigure 5(b) it is 0.9 B 0 . In both fig-
ures the design velocity is 0.7. These figures show that the Kosmahl criteria (ref. 11)
is a good indication of the length of the refocusing region. These figures give the length
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of the refocusing region. For example, referring to figure 4(c), we see that a minimum
rms value occurs for an E-slope at a plateau magnetic field B = 0.31 B . In fig-
ure 5(a) the straight lines A to F represent the linear decay of the magnetic field from a
value of 1 to the plateau value B . In the example stated, if the slope designated as E
is followed down to B = 0.31 Bo, an axial distance of 16.6 is read. This represents
the beginning of the plateau region and is 2. 64 cyclotron wavelengths Xc from the begin-
ning of the magnetic field decay. The total length of the plateau is determined by con-
tinuing the line Bp = 0.31 B until it intersects with the curved line designated by E 1.
The intersection occurs at an axial distance of 25 ao . The plateau length in units of the
local cyclotron wavelength (i. e. , Xc calculated at B = 0. 31 B ) is 0. 414 Xc'

c 0 C
The computed results demonstrate that the tuning capability should be placed on the

plateau length probably by employing effective shields. The magnitude of the plateau
field is best determined from the desired output radius of the beam (see fig. 6). The
slope of the magnetic field decay is probably the least controllable parameter. Its value
is fixed by the physical considerations of the placement and size of the iron pole piece
and coil or permanent magnets.

It is noted that the magnetic configurations in this study are independent of the elec-
tron distribution function. That is, no weighting function is assigned to the classes of
electrons that are considered. If it is known that most of the recoverable energy of the
spent beam is carried by the fast electrons it would be advantageous to use these elec-
trons as the design class. Because the fast electrons must penetrate most deeply into
the collector it is necessary that they enter with the smallest possible radial velocity.

CONCLUSIONS

This report evaluates an extensive number of refocusing configurations of the type
having a linear magnetic decay followed by a constant plateau field. The slope of the de-
cay and the magnitude of the plateau field are parameters in this study. The electron
trajectories are computed for various initial conditions; the plateau length and the exit
angles of the particles are determined. The following conclusions are made:

1. A large number of possible designs exist; there is no obvious optimum design.
2. The slope of the magnetic decay should be determined by factors such as the size

and availability of magnets and the general ability of the main magnetic circuit to give a
linear decay.

3. The field strength of the plateau region is best determined by factors such as the
desired final beam size and possible impingement problems.
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4. Because of the sensitivity of the results to small changes in initial conditions and
to slight changes in plateau length, it is necessary to allow for a tuning capability in any
actual design.

5. The best tuning capability is control of the plateau length.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, February 1, 1974,
502-23.
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APPENDIX A

SYMBOLS

A vector potential

A p component of vector potential

a°  tunnel radius

B magnetic field

Bc cathode field

B containment field within tube; axial component

B plateau magnetic field; axial component

B z component of magnetic fieldz

B* normalized cathode field
c

B* normalized magnetic field in C direction

b beam radius

b normalized beam radius; Brillouin radius

Co, c2k expansion coefficients used in eq. (C30)

E electric field

e electronic charge

H Hamiltonian

H * normalized Hamiltonian

Io  dc current

m particle mass

P ,P normalized momenta conjugate to (p, C) coordinates

PrPzP< generalized momenta conjugate to (r, z, <p) coordinates

qe total electron charge within volume -

r, z, (p cylindrical coordinates

r,z unit vectors in r and z directions

t time variable

uo  dc velocity within tube
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V electric potential

V* normalized electric potential

E Napierian base, 2. 718...

E 0 dielectric constant of vacuum

( normalized axial direction

7 electron charge to mass ratio

E normalized time variable

Xc cyclotron wavelength calculation at B

X I cyclotron wavelength calculated at B

p, normalized cylindrical coordinates

Pe electron charge density

a surface area

T volume

T difference of magnetic flux at field point z and at cathode defined in eq. (C 15),

- Ic

T* normalized T function

p angular component of cylindrical coordinates

S magnetic flux density

41pc magnetic flux density at cathode

i* normalized magnetic flux density

Pc normalized magnetic flux density at cathode

we cyclotron frequency

W plasma frequency

Subscripts:

c cathode

e electron

o initial value

p plateau value

r radial component

z axial component



axial normalized component

p radial normalized component

p angular component

Superscripts:

unit vector

- vector

* normalized quantity

Stotal time derivative, d/dt
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APPENDIX B

ELECTROSTATIC SPACE CHARGE POTENTIAL

In evaluating the space charge effects of the beam it is assumed that there exists no
z component of this force. The potential is given by Poisson's equation

2V _Pe2V-- (B1)
EO

where Pe is the electron density distribution.

Interior Points of Beam

For interior points of the beam (i.e., r s b) the electron density is assumed to be

constant and is given by

-I
pe bo (B2)P b2

UO

where b is the beam radius, u0 is the dc velocity, and 10 is the direct current of the

tube. The negative sign in equation (B2) indicates the negative charge of electrons.

Equation (Bl) becomes

I d (rdV o (3!I r- - 10(B3)
r dr d rb2 u0E

This can be immediately integrated and yields

2
V- 1 r2 r-b (B4)

4 17

where wp the plasma frequency is written as
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S= o Y/2(B5)
P =b2

Exterior Points of Beam

For points that are exterior to the beam (i.e., r - b) Gauss' law can be used to de-

duce the potential. Because E = -grad V, equation (Bl) can be written as

-pe
div E le (B6)

O

If equation (B6) is integrated over a cylindrical volume T of length 5z, the left side of

equation (B6) can be converted to a surface integral by using Gauss' law, that is,

fdiv E d-= fE d = 2 1rrEr 6z (B7)

The last step in equation (B7) is possible because of the assumption that Ez = 0. Inte-

grating the right side of equation (B6) over 7 gives the total charge +qe within the vol-

ume 7Tb2 6z. Equation (B6) becomes

qe
2 rEr 6z - e (B8)

E
o0

Using equation (B2) and the assumption of a constant density beam yields

-IO

qe - 6z
u o

Solving equation (B8) for Er gives

Er_ o 1 (B10)
27TE uo r
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or using equation (B3) results in

dV_ o 1 (B11)
dr 27TEouo r

Integrating equation (B11) yields

Io
V _ In r + constant (B12)

27rEoUo

The constant in equation (B12) is evaluated by equating the potential of equation (B12)

with that of equation (B4) at r = b. Hence,

2 2

V = In [EL r r b (B13)
471

Equation (B5) was used in arriving at this form of equation (B13). The E in equa-

tion (B13) is the Napierian base 2. 718 ...
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APPENDIX C

DERIVATION OF THE EQUATIONS OF MOTION

Consider a particle with charge -e moving in an external axisymmetric magnetic
and electric field. In cylindrical coordinates its Hamiltonian is

1 [2+ p( +erA
H = p r +P P re r ) 1eV (C 1)

In this equation pr' Pz and p are the conjugate momenta to the cylindrical coordi-
nates r, z, and p. The magnetic field B is

B =curlA= r - + z rA (C2)
az Or 9

and the electric field E is

E = -grad V = -r - V (C3)
Or az

It is possible to rewrite the vector potential in terms of the magnetic flux / that passes
through a surface a of perimeter s. The surface is a circle of radius r and is per-
pendicular to the axis z. Hence,

= B- da =f(curl A). da (C4)

By Stokes' theorem

f. - I -
S(curl A) da = A dS (C 5)

= 2 7T Ar dp

(C 6)

= 2rrA

(14
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Substituting equation (C6) into equation (C4) gives

A - (C7)
27r

AP 2 r

Because 9 is a cyclic coordinate, we have

dp aH - 0 (C8)

dt 8

or

p = constant (C9)

This result, along with equation (C7), is used to rewrite the Hamiltonian exclusively in
terms of the r and z coordinates. This emphasizes the two-dimensional character of
the formulation. The second canonical equation considered is

_ 9 _ 8H (C 10)
at Sp

Performing the differentiation of equation (C 1) yields

I (p + erA (C11)
m r2

and substituting equation (C7) into equation (C11) gives

1 / e -9 e + (C 12)
mr2  .2-

The constant p is evaluated from the initial condition at the cathode. If the electrons
are emitted from the cathode at a radius rc and if it is assumed that they are emitted

perpendicular to the cathode (i. e., <= 0 at r = rc), then

p _ e (C13)

S 2 15
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and

1 p + erA 2 1 2 (C14)

2m r 2m \2ffr

where

T = I - C (C 15)

The Hamiltonian (eq. (C 1)) can now be written

H 1 2 1 (eT -eV (C16)

2 m rz 2m 2r

Normalization of Equations

The variables r and z are normalized with respect to the tunnel radius ao of the

microwave tube. And the time scale t is normalized to the cyclotron frequency wc of

the electrons. The cyclotron frequency is defined as

wc =_ e B (C17)
comm

where B is the confinement magnetic field. Let p, (, and E be the normalized

counterparts to r, z, and t. Hence,

rp -
ao

- z (C 18)
a0

16 = t
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The momenta are normalized to the scale factor aomw . Hence,

P =Pr
P a mW

(C 19)

P Pz

aomw
c

The magnetic field is normalized to the confinement field B (i. e., B z = BB*) as

follows:

T = 27 r Bz(r', z')r' dr' - r Bz(r', zc)r' dr

= 2aB [f P B p' dp' - Pc B*(pI )p' dp

= 2a2B0  - = 2a 2B T* (C20)

The electrostatic space charge potential (see appendix B) is normalized as follows:

2 2

V- V (C2 1)
4

where

2
P2 p sb*

V* --

(b 2 n [ p0 b (C22)
(b*2l [(L*)]

and

b- b (C23)
ao
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These substitutions into the Hamiltonian of equation (C 16) yield the normalized

Hamiltonian H*.

H [p(0),((), (),P () - 1 H [r (t), z(t), pt (t), pz (t)] (C24)

oc/2m

H = (P2 ) ( - V (C25)

The set of canonical equations gives the following set of equations of motion to be solved:

d= aH* (C26)
de aP

p

dO DP

dP *
d H (C28)

dO ap

dP aH* S_ H (C29)
de ac

It is noted here that because this study is limited to a very particular magnetic field con-
figuration, namely a linear decay followed by a constant plateau, the z component of the
magnetic field has no r dependence. This is shown by considering the axial expansion
formula. As shown in Gewartowski and Watson (ref. 8) a solution of the axisymmetric
Laplace equation in cylindrical coordinate has the form

o00

V(r,z) = > c2 k(z)r 2k  (C30)
k=0

in which

co = V(0, z) (C31)
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and

(_1 )k d2k c

c2k - o k = 1,2,.. (C32)
2

2k(k! )2 dz 2k

However, in a region in which the z component of the magnetic field is a constant (i. e.,
Bzo = -dV /dz = constant), equation (C30) reduces to

V(r, z) = V(0, z) (C33)

And in a region in which dBzo/dz = -d 2V /dz 2 = constant, equation (C30) reduces to

V(r,z) = V(0,z) -1 d2 V(0,z) r 2  (C34)
4 dz 2

Taking the z derivative of equation (C34) and inserting the proper negative sign yields

Bz(r,z) = Bz(0,z) (C35)

The off-axis magnetic field Bz is equal, therefore, to the axial magnetic field. Be-
cause only the z component of the magnetic field is used in forming the magnetic flux
term T*, there is no need to consider the r component or its dependence on r. As a
consequence, the integrations in equation (C20) can be carried out

T 1 2B 1 2 B (36)
=2 2 pc c (C36)

Performing the indicated partial differentiations in equations (C26) to (C28) produces the
following final form of the equations of motion:

L = P (C37)
dO P

d p (C38)
dO
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"p, p -5b*
p

dP 1 ( B) (039)

dO 4 __ C ) 2 >_ b*

_ BC I B

dPC 1 P2 B ( - BC _ BC (C40)
dE 4 p ac

It is assumed that the radius of emissions at the cathode is equal to the beam radius,

that is,

Pc = b * (C4 1)

This ignores all of the subtleties of beam formation such as thermal effects, scalloping,

and other problems in electron gun design.

The parameter (w/W C)2 is determined from the dc conditions of the tube. A dc

beam will have an equilibrium radius equal to b* at B = 1. Ideally the dc beam will

be laminar, with no net radial forces. That is, dP /dO will be zero. Applying this

condition to equation (C39) yields

- b* I -B B*2 + _1-Pb =0

or

= 1 )- B2 (C42)

For ideal Brillouin flow B* = 0 and wp/w) 2 = 1/2.

Numerical Solution

The equations of motion (eqs. (C36) to (C39)) were integrated numerically on an IBM

7094 II Data Processing System. The program used was a revision of a program ini-

tially written for the solution of 240 coupled first-order equations. That is, the original

problem contained four equations of the type shown in equations (C36) to (C39) for each o
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sixty interacting particles. The coupling occurred, of course, through the space charge
terms.

A simple and quick integration technique was required for the larger program in
order to minimize computer time. This technique used a Taylor's series expansion of
the variables p, (, P , and P, and is equivalent to a second-order Runge-Kutta inte-
gration procedure. T e accuracy of the integration was checked by monitoring the total
energy of the system. The energy was conserved to an accuracy of about 3 percent. The
series expansion used is as follows:

MP
p = po + dP) AO + (AO) 2 (C42)

\dO/0  2 kdo

+ = A +O + 1 (- ( A o ) 2  (C43)0 dO o  d

/dP A
P = P + - AO (C44)

S(dO Po

p p d(C45)P = P o \d)A (C45)

The step size AO was 100 (7r/18 radians). In equations (C42) to (C45), the subscript o
refers to values at the beginning of the integration step.
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